skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abhishek Dalvi, Ayan Acharya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Heterogeneous Information Network (HIN), where nodes and their attributes denote real-world entities and links encode relationships between entities, are ubiquitous in many applications. The presence of multiple types of nodes and links pose significant challenges to the state-of-the-art methods for learning node embeddings from heterogeneous graphs. To address these challenges, we consider three variants of graph variational autoencoder models for heterogeneous networks that avoid the computationally expensive sampling of meta-paths. The proposed methods also maintain uncertainty estimates of node embeddings that help improve generalization performance. We report the results of experiments on link prediction using three different real-world heterogeneous network benchmark data sets that show that the proposed methods significantly outperform state-of-the-art baselines. 
    more » « less